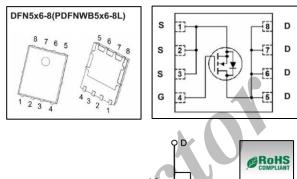
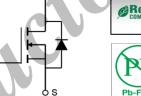


APN6516 30V N-Channel Enhancement Mode MOSFET

General Description


APN6516 combines advanced MOSFET technology with a low resistance package to provide extremely low RDS(ON). This device is most suitable to load-switch or DC/DC conversion applications.


Applications

- DC/DC Converters in Computing, Servers, and POL
- Isolated DC/DC Converters in Telecom and Industrial

Product Summary

$ m V_{DS}$	30V
IDMAX (at $V_{GS} = 10V$)	32A
$R_{DS(ON)}$ (at $V_{GS} = 10V$)	< 5mΩ
$R_{DS(ON)}$ (at $V_{GS} = 4.5V$)	< 8mΩ

Absolute Maximum Ratings (Ta = 25°C unless otherwise specified)

Parameter		Symbol	Rating	Unit	
Drain-Source Voltage		VDS	30	V	
Gate-Source Voltage		Vgs	±20	V	
Continuous Drain Current ^G	Tc=25°C	Ip	32		
	Tc=100℃		25		
Pulsed Drain Current ^C		Ідм	127	A	
Continuous Drain Current	TA=25°C	IDSM	27	^	
	TA=70°C	IDSM	22		
Avalanche Current ^C		las	34		
Avalanche Energy L = 0.05 mH ^C		Eas	29	mJ	
Vps Spike	100ns	VSPIKE	36	V	
Davies Dissipation B	Tc=25°C	PD	25	W	
Power Dissipation ^B	Tc=100℃		10		
Same Significant A	TA=25°C	PDSM	6	l vv	
Power Dissipation A	TA=70°C	PDSM	3.8		
Thermal Resistance.Junction- to-Ambient A	t ≤ 10s	RthJA	21		
Thermal Resistance.Junction- to-Ambient AD	Steady-State	RthJA	53	°C/W	
Thermal Resistance.Junction- to-Case	Steady-State	RthJC 5			
Junction Temperature		TJ	150	°C	
Storage Temperature Range		Tstg	-55 to 150	℃	

APN6516 **30V N-Channel Enhancement Mode MOSFET**

Electrical Characteristics (T_I = 25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	BVDSS	$I_D = 250 \mu A$, $V_{GS} = 0V$	30			V
Zero Gate Voltage Drain Current	Inss	Vps = 30 V, Vgs = 0 V			1	
Zero Gate Voltage Drain Current	IDSS	Vps = 30 V, Vgs = 0 V, TJ = 55 ℃			5	μΑ
Gate to Source Leakage Current	Igss	Vps = 0 V, Vgs = ±20 V			±100	nA
Gate to Source Threshold Voltage	VGS(th)	V _{DS} = V _{GS} , I _D = 250μA	1.2		2.2	V
		Vgs = 10 V, ID = 20 A			5	
Static Drain-Source On-Resistance	RDS(On)	Vgs = 10 V, ID = 20 A, TJ = 125 ℃			8	mΩ
		Vgs = 4.5 V, ID = 20 A			8	
Forward Transconductance	g FS	V _{DS} = 5 V, I _D = 20 A		83		S
Input Capacitance	Ciss	ì		1229	7	
Output Capacitance	Coss	Vgs = 0 V, Vps = 15 V, f = 1 MHz		526		pF
Reverse Transfer Capacitance	Crss			83		
Gate Resistance	Rg	Vgs = 0 V, Vps = 0 V, f = 1 MHz	0.8		2.6	Ω
Total Gate Charge	Qg(10V)			24	33	
Total Gate Charge	Qg(4.5V)	Vgs = 10V, Vps = 15 V, Jp = 20 A		12	17	nC
Gate Source Charge	Qgs	VGS = 10V, VDS = 15 V, 16 = 20 A		4		nC
Gate Drain Charge	Qgd			5.5		
Turn-On DelayTime	td(on)			7.0		
Turn-On Rise Time	tr	$V_{GS} = 10V$, $V_{DS} = 15 V$, $R_L = 0.75 \Omega$,		4.8		
Turn-Off DelayTime	td(off)	RGEN = 3 Ω		24.0		ns
Turn-Off Fall Time	tr			5.8		
Body Diode Reverse Recovery Time	trr	15 - 20 A di/di = 500 A/va		12.6		
Body Diode Reverse Recovery Charge	Qrr	$I_F = 20 \text{ A}, d_1/d_1 = 500 \text{ A}/\mu\text{s}$		15.2		nC
Maximum Body-Diode Continuous Current	ls				30	Α
Diode Forward Voltage	Vsp	Vgs = 0 V, Is = 1 A			1	V

Notes:

- A. The value of ReJA is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_{A}=25^{\circ}C.\ The\ Power\ dissipation\ P_{DSM}\ is\ based\ on\ R_{BJA}\ and\ the\ maximum\ allowed\ junction\ temperature\ of\ 150^{\circ}C.\ The\ value\ properties and\ the\ properties are considered by the properties of\ properties and\ properties are considered by the properties of\ properties are considered by the properties are c$
- I have 20°C. In experience of 150°C. The in any given application depends on the user's specific board design.

 B. The power dissipation Po is based on Taleuxe =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation jimit for cases where additional heatsinking is used.

 C. Single pulse width limited by junction temperature Taleuxe =150°C.

 D. The Raw is the sum of the thermal impedance from junction to case Raw and case to ambient.

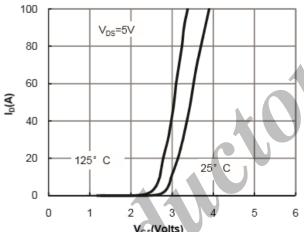
 E. The static characteristics in Figures 1 to 6 are obtained using <300us pulses, duty cycle 0.5% max.

 E. These curves are based on the junction the case themself impedance which is measured with the device mounted to a life.

- F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of Tajawaj=150°C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with Ta=25°C.

Ordering Information

Ordering Part Number	Package	MOQ
APN6516	DFN5x6-8 (PDFNWB5x6-8L)	5,000 pcs / reel


THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. APOLLO SEMICONDUCTOR DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. APOLLO SEMICONDUCTOR RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

• Typical Characteristics

V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

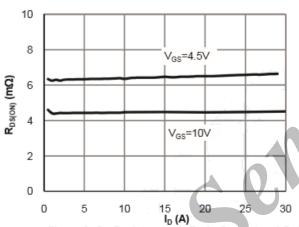


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

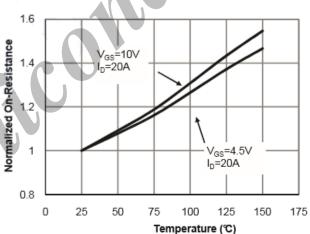


Figure 4: On-Resistance vs. Junction Temperature
(Note E)

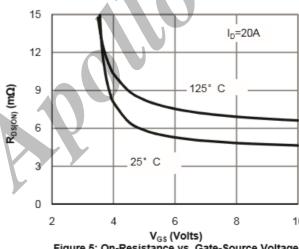


Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

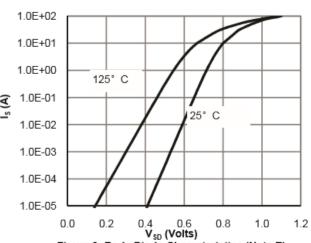


Figure 6: Body-Diode Characteristics (Note E)

• Typical Characteristics

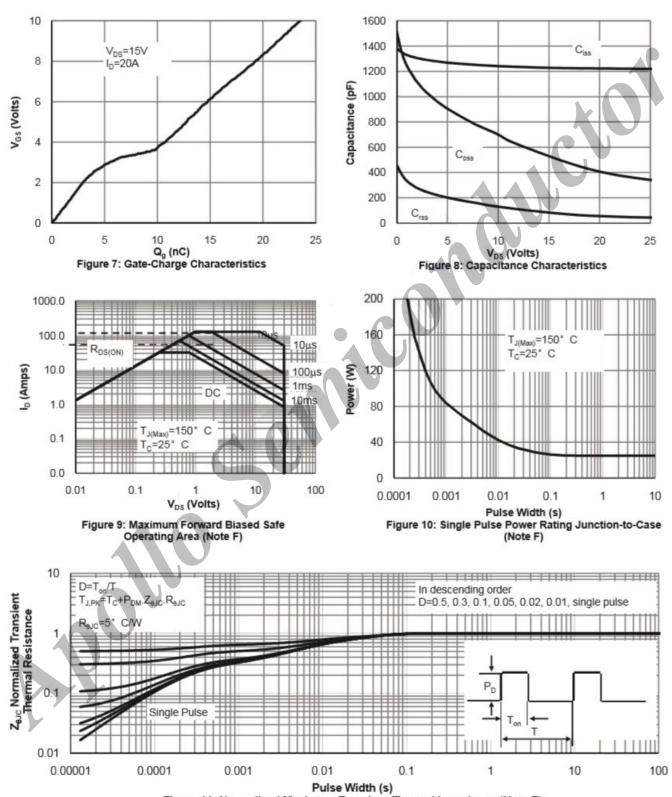
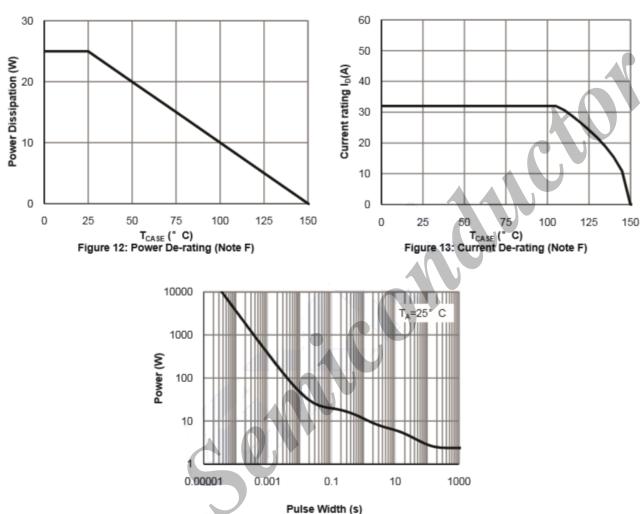



Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

• Typical Characteristics

Pulse Width (s)
Figure 14: Single Pulse Power Rating Junction-toAmbient (Note H)

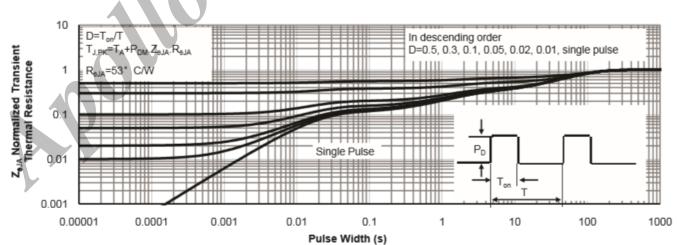
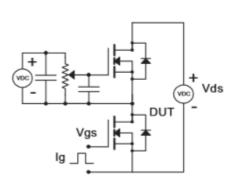
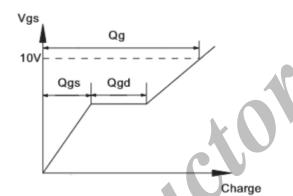
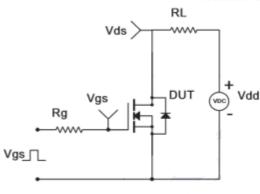
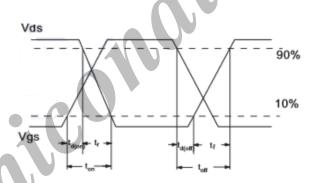
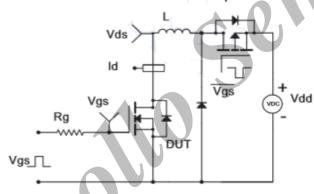
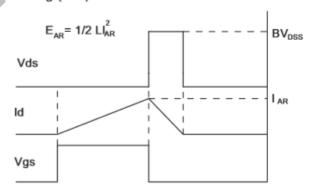




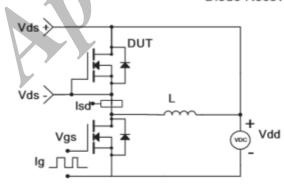
Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

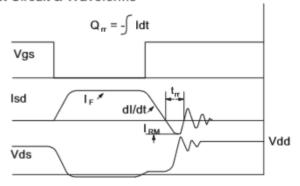


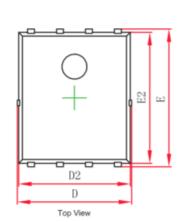

Gate Charge Test Circuit & Waveform

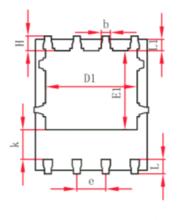


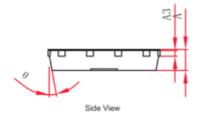

Resistive Switching Test Circuit & Waveforms



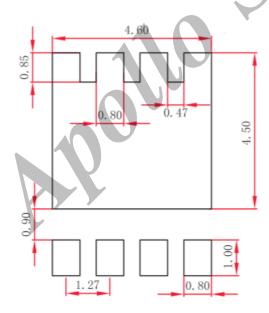

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms


Diode Recovery Test Circuit & Waveforms





• DFN5x6-8(PDFNWB5x6-8L) Package Outline Dimensions



Bottom View

iew					
D. ot of	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Λ	0,900	1.000	0.035	0.039	
A3	0.254	REF.	0. 010REF.		
D	4.941	5.096	0.195	0. 201	
Е	5.974	6.126	0. 235	0.241	
D1	3.910	4.110	0.154	0.162	
E1	3. 375	3.575	0.133	0.141	
D2	4.824	4.976	0.190	0.196	
E2	5. 674	5.826	0. 223	0. 229	
- k	1.190	1.390	0. 047	0.055	
b	0.350	0.450	0.014	0.018	
e	1, 270		0. 050TYP.		
L	0.559	0.711	0.022	0.028	
L1					
	0.424	0.576	0.017	0.023	
H 0	0. 424 0. 574 10*	0.576 0.726 12°	0. 017 0. 023 10*	0. 023 0. 029 12°	

■ DFN5x6-8(PDFNWB5x6-8L) Suggested Pad Layout

Note:

- 1. Controlling dimension:in millimeters.
- 2.General tolerance:±0.05mm.
- 3. The pad layout is for reference purposes only.

APN6516 30V N-Channel Enhancement Mode MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Apollo Semiconductor Ltd., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Apollo"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Apollo makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Apollo disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Apollo's knowledge of typical requirements that are often placed on Apollo products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Apollo's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Apollo products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Apollo product could result in personal injury or death. Customers using or selling Apollo products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Apollo personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Apollo. Product names and markings noted herein may be trademarks of their respective owners.